International ERS/ATS Consensus Definition, Mechanisms, Evaluation, and Treatment of Severe Asthma

ONLINE-ONLY SUPPLEMENT 1

Background for Criteria for Uncontrolled Asthma

The criteria for "uncontrolled asthma" were chosen based on previously published information from asthma guidelines and severe asthma networks. A score on Asthma Control Questionnaire (ACQ) of more than 1.5 and Asthma Control Test (ACT) of less than 19 were chosen based on data that suggest this cut-off identifies patients less-than-optimally controlled, and which is in line with the definition of "not well controlled" by current National Asthma Education and Prevention Program (NAEPP) guidelines [1-4]. Thresholds for frequent severe or serious exacerbations (as defined by the ATS-ERS Task Force on Asthma Control and Severity) were identified in SARP where >50% of the severe asthmatics had frequent oral CS bursts and nearly 30% had been hospitalized in the previous year, but in which large percentages of subjects had one or the other, but not both [5, 6]. Data from the Severe Asthma Research Program (SARP) cluster analysis suggest that pre-bronchodilator FEV1 (% predicted) is a better indicator of future risk than post-bronchodilator [6]. For instance, in the Moore clusters, 2 of the 3 clusters in which most of the severe asthmatics were found, post-bronchodilator FEV1 was >80% predicted (i.e. normal). Despite this normalization of FEV1 post-bronchodilator, there was a high degree of either health care utilization, systemic corticosteroid use or symptoms. These subjects, indeed, had a pre-bronchodilator FEV1 <80% predicted and often – much less than 80% predicted. Thus, suggesting that future risk concerns only those asthmatics with post-bronchodilator FEV1 <80% predicted one might miss up to two thirds of those at higher risk. In addition, in some of the first longitudinal follow up data from SARP of systemic corticosteroids use, low pre-bronchodilator FEV1 was one of the strongest predictors of requirement for systemic corticosteroids both at baseline and at 3–4 years of follow-up. However, it is agreed that future risk associated with FEV1 % predicted is a continuum, with increasing risk associated with progressively lower FEV1 % predicted values [7].

FEV1 % predicted is the only physiologic measure currently incorporated in the definition of severe asthma, yet FEV1 % predicted is neither sensitive nor specific for the identification of severe asthma especially in children.

References

- 1. Juniper EF, Bousquet J, Abetz L, Bateman ED. Identifying 'well-controlled' and 'not well-controlled' asthma using the Asthma Control Questionnaire. *Respir Med* 2006: 100(4): 616-621.
- 2. National Heart Lung and Blood Institute. National Asthma Education and Prevention Program. Expert Panel Report 3: Guidelines for the Diagnosis and Management of Asthma. 2007.
- 3. Global Strategy for Asthma Management and Prevention. Global Initiative for Asthma (GINA). Updated 2008. Available from: http://www.ginasthma.org.

- 4. Nathan RA, Sorkness CA, Kosinski M, Schatz M, Li JT, Marcus P, Murray JJ, Pendergraft TB. Development of the asthma control test: a survey for assessing asthma control. *J Allergy Clin Immunol* 2004: 113(1): 59-65.
- 5. Reddel HK, Taylor DR, Bateman ED, Boulet LP, Boushey HA, Busse WW, Casale TB, Chanez P, Enright PL, Gibson PG, de Jongste JC, Kerstjens HA, Lazarus SC, Levy ML, O'Byrne PM, Partridge MR, Pavord ID, Sears MR, Sterk PJ, Stoloff SW, Sullivan SD, Szefler SJ, Thomas MD, Wenzel SE. An official American Thoracic Society/European Respiratory Society statement: asthma control and exacerbations: standardizing endpoints for clinical asthma trials and clinical practice. *Am J Respir Crit Care Med* 2009: 180(1): 59-99.
- 6. Moore WC, Bleecker ER, Curran-Everett D, Erzurum SC, Ameredes BT, Bacharier L, Calhoun WJ, Castro M, Chung KF, Clark MP, Dweik RA, Fitzpatrick AM, Gaston B, Hew M, Hussain I, Jarjour NN, Israel E, Levy BD, Murphy JR, Peters SP, Teague WG, Meyers DA, Busse WW, Wenzel SE. Characterization of the severe asthma phenotype by the National Heart, Lung, and Blood Institute's Severe Asthma Research Program. *J Allergy Clin Immunol* 2007: 119(2): 405-413.
- 7. Moore WC, Meyers DA, Wenzel SE, Teague WG, Li H, Li X, D'Agostino R, Jr., Castro M, Curran-Everett D, Fitzpatrick AM, Gaston B, Jarjour NN, Sorkness R, Calhoun WJ, Chung KF, Comhair SA, Dweik RA, Israel E, Peters SP, Busse WW, Erzurum SC, Bleecker ER. Identification of asthma phenotypes using cluster analysis in the Severe Asthma Research Program. *Am J Respir Crit Care Med* 2010: 181(4): 315-323.

Supplemental Table 1. Available tools in the evaluation of a patient with severe asthma and typical situations in which they have been used

Test	Purpose	Comment
Physiologic	-	·
Lung volumes	diagnosis, assessment of severity/risk	In patient with unexplained dyspnea or with smoking exposure.
Diffusing capacity of the lung for carbon monoxide (DLCO)	diagnosis	In patient with smoking exposure and possibly in adult onset asthma.
Nonspecific bronchial bronchoprovocation (exercise, methacholine, mannitol, etc.)	diagnosis	In patient with normal or near normal lung function in order to exclude asthma
Nasal nitric oxide (NO), electron microscopy, ciliary motility and function, genetic testing	diagnosis	When primary ciliary dyskinesia (PCD) is suspected.
Cardiac evaluation, with or without cardiopulmonary exercise test/echocardiogram	diagnosis	When evaluating patient with dyspnea that is out of proportion to the abnormalities noted on lung function testing.
Laboratory	1	
Aspergillus specific IgE (consider other fungi)	diagnosis	When elevated IgE, central bronchiectasis or high blood eosinophils
Quantitative IgG, IgA and IgM	diagnosis	When evaluating for immunodeficiency in patient with recurrent infections, bronchiectasis.
Sweat chloride (if necessary, genetic testing and/or nasal potential difference)	diagnosis	In a setting of bronchiectasis or history suggestive of ciliary disorder (e.g. history of infertility, family history of CF)
Anti-neutrophil cytoplasmic antibodies (ANCA)	diagnosis	When considering Churg Strauss syndrome or vasculitis.
Endoscopy		-
Fiberoptic bronchoscopy with endobronchial biopsy or thoracoscopic biopsy	diagnosis	To rule out other conditions and possibly for phenotyping
Radiologic		
Multidetector computed tomography (MDCT) of a chest	diagnosis	When suspecting non-asthma respiratory disorders, and in the case of an abnormal chest X-ray. The following radiographic findings may suggest alternative disorders: - Ground glass: HSP, RB-ILD (if smoker), drug abuse
		 (e.g. cocaine) - Bronchiectasis: ABPA, CF, atypical Mycobacteria or other systemic immunodeficiency - Emphysema - Airway tumors, foreign body
Psychological	1	
Psychosocial/psychiatric evaluation	diagnosis, assessment of severity/risk	Indicated when evaluating difficult asthmatic in which psychosocial disorders may be primary

Supplemental Table 2. Available tests for addressing co-morbidities in severe asthma and typical situations in which they have been used

Test	Purpose	Comment
Peak expiratory flow (PEF)	diagnosis,	When assessing PEF variability as measure of asthma
(twice daily, preferably using	assessment of	control or impact of environmental exposures on PEF
electronic device)	severity/risk	(e.g. occupational asthma).
Urinary or salivary cotinine	assessment of co-	When evaluating smoking exposure in children and
	morbidity	adults
Fiberoptic	diagnosis	When evaluating upper airway for rhinosinusitis and
rhinoscopy/laryngoscopy		vocal cord dysfunction.
Computed tomography scan of	diagnosis	When evaluating for chronic sinusitis.
the paranasal sinuses		
Psychosocial/psychiatric	diagnosis,	When evaluating difficult asthmatic in which
evaluation	assessment of	psychosocial disorders may be confounding and
	severity/risk	influencing compliance/adherence
Obtaining pharmacy prescribing	assessment of co-	When evaluating compliance/adherence
records	morbidity	

Supplemental Table 3. Therapy-induced comorbidities

Therapy-induced comorbidities		
Growth failure/retardation in children		
Weight gain/obesity		
Osteoporosis/osteopenia		
Cataracts/glaucoma		
Dermal thinning/ecchymoses		
Psychiatric illness/psychosis		
Gastroesophageal reflux		
Diabetes/glucose intolerance		
Hypertension		
Myopathy		
Obstructive sleep apnea		
Avascular necrosis		
Pneumonia		
Fungal infection		

Supplemental Table 4. Available tools for phenotyping and typical situations in which they have been used

Test	Purpose	Comment
Exhaled nitric oxide (NO)	diagnosis, assessment of	Maybe be Indicated when assessing asthma
	severity/risk, to guide therapy	control or adherence to steroids
Induced sputum for	diagnosis, assessment of	
sputum eostinophils	severity/risk, to guide therapy	
Presence of specific and	diagnosis, assessment of	
total IgE	severity/risk, to guide therapy	
Aspirin or lysine aspirin	diagnosis	In suspected aspirin sensitive asthma. Done in
challenge		an appropriate center.
Lung function fluctuation	Assessment of severity/risk	
monitoring		