Primary Ciliary Dyskinesia: Overview and Update

Margaret W. Leigh, MD Professor of Pediatrics University of North Carolina at Chapel Hill

Genetic Diseases of Mucociliary Clearance Consortium

In

Funded by:

Financial Disclosures

- Vertex Pharmaceticals, INC
 - Research grant
- Parion Sciences, INC
 - Research grant
- Circassia Pharmaceuticals, INC
 - Research grant

Reference to unlabeled/unapproved use of drugs:

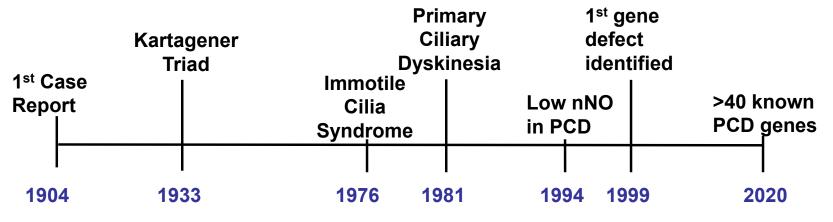
None

Primary Ciliary Dyskinesia is a Rare Disease

NIH Office of Rare Diseases: affects <200,000 in US ~7,000 rare diseases affect 25-30 million in US

Primary Ciliary Dyskinesia is a Rare Disease

NIH Office of Rare Diseases: affects <200,000 in US ~7,000 rare diseases affect 25-30 million in US


Rare Lung Diseases	# in US
Cystic fibrosis (CF)	~35,000
Primary ciliary dyskinesia (PCD)	~17,000
Childhood interstitial lung diseases (chILD)	~10,000

Primary Ciliary Dyskinesia is a Rare Disease

NIH Office of Rare Diseases: affects <200,000 in US ~7,000 rare diseases affect 25-30 million in US

Rare Lung Diseases	# in US
Cystic fibrosis (CF)	~35,000
Primary ciliary dyskinesia (PCD)	~17,000
Childhood interstitial lung diseases (chILD)	~10,000
Common Lung Disease	
Asthma	22,000,000

Primary Ciliary Dyskinesia Timeline: Advances with New Technology

Kartagener triad

- situs inversus
- chronic sinusitis
- bronchiectasis

Primary Ciliary Dyskinesia

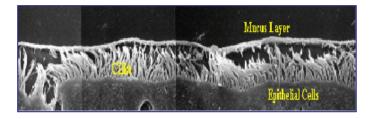
- chronic oto-sino-pulmonary disease
- situs inversus totalis in ~ 50%
- male infertility (defective sperm motility)
- usually autosomal recessive

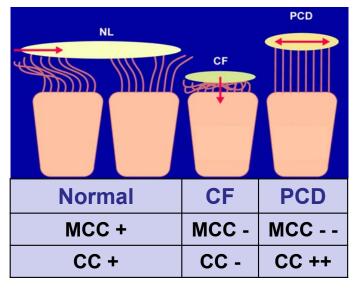
more recent observations:

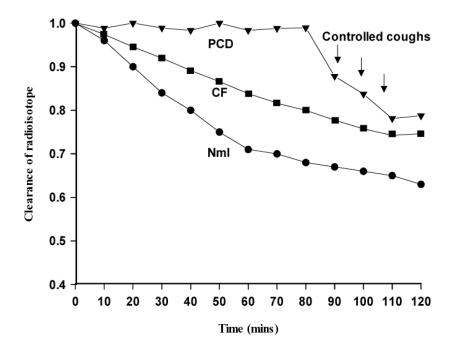
- -neonatal respiratory distress in ~85%
- -heterotaxy (or situs ambiguus) in at least 10%
 - -congenital heart disease in at least 5%

Audience Response Question 1

You are counseling parents whose child has just been diagnosed with primary ciliary dyskinesia (PCD). What is the typical mode of inheritance for PCD?


- A. Autosomal dominant
- B. X-linked
- C. Autosomal recessive
- D. Polygenic disorder (mutations in multiple different genes)
- E. Chromosomal disorder


Audience Response Question 1


You are counseling parents whose child has just been diagnosed with primary ciliary dyskinesia (PCD). What is the typical mode of inheritance for PCD?

- A. Autosomal dominant
- B. X-linked
- → C. Autosomal recessive
 - D. Polygenic disorder (mutations in multiple different genes)
 - E. Chromosomal disorder

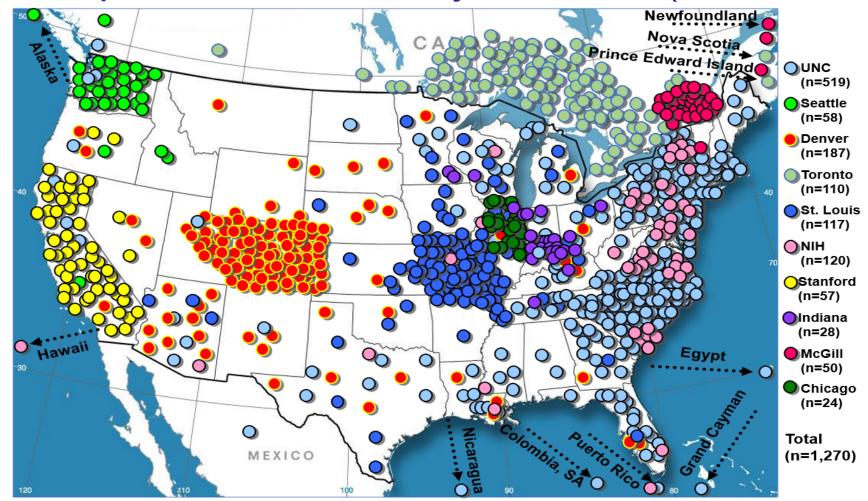
Airway Host Defense: Mucociliary and Cough Clearance

Phenotypic Clinical Features in PCD

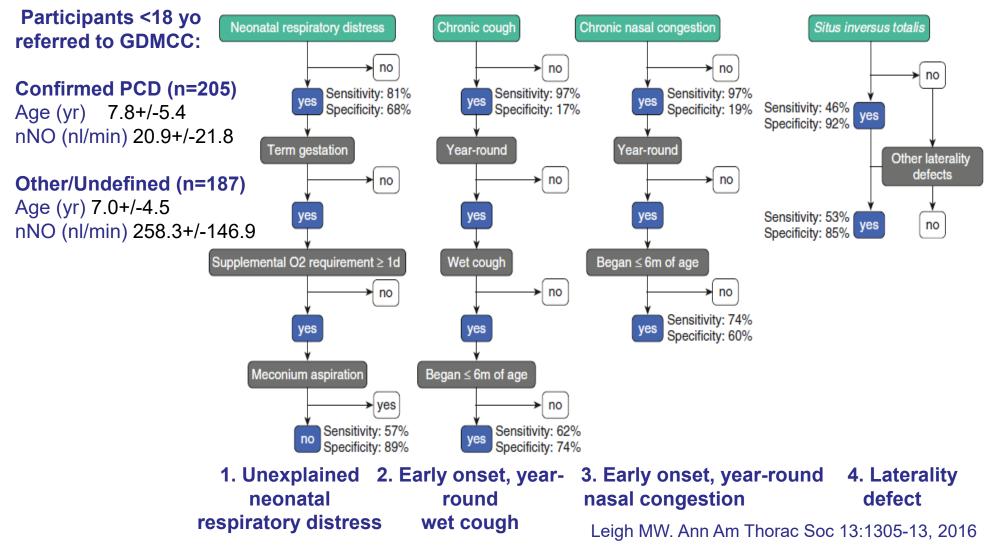
Clinical feature	Pediatric (n=31, 8 mo-18 yr)	Adult (n=47, 19-73 yr)
Chronic cough	100%	100%
Chronic rhinitis/sinusitis	100%	100%
Chronic otitis media	100%	92%
Neonatal resp. distress	87%	65%
Bronchiectasis	61%	98%
Situs inversus	68%	46%

Noone PG et al: Am J Respir Crit Care Med 169:459–467, 2004

GDMCC:


Genetic Disorders of Mucociliary Clearance Consortium PI: M Knowles (initiated 2004)

Specific Aims:


- Develop a clinical research network to study rare diseases of the airways, focusing on PCD
- Test for disease-causing mutations in PCD to develop genetic diagnostic approach
- Perform a longitudinal study in infants and children with PCD to define the clinical pathogenesis of airways disease by serial tracking of:
 - Standardized clinical history, respiratory cultures, pulmonary function tests and chest CT scans.

http://rarediseasesnetwork.epi.usf.edu/

Participants Evaluated by GDMCC (2004-2018)

Criteria-defined clinical features in PCD

Participants (<18 years of age) Fulfilling Criterion

Criteria-defined clinical features	PCD (n=204)	Other disease or Undefined (n=185)	Adjusted Odds Ratio (95% Confidence intervals)*	P-value
Unexplained neonatal respiratory distress (#1)	116 (57%)	21 (11%)	6.6 (3.5,12.3	<0.0001
Early onset, year- round wet cough (#2)	128 (62%)	48 (26)	3.1 (1.7,5.5)	0.0001
Early onset nasal congestion (#3)	151 (74%)	74 (40%)	3.4 (1.9,6.3)	<0.0001
Laterality defect (#4)	109 (53%)	28 (15%)	7.7 (4.0,14.9)	<0.0001
Multiple ear infections in first 2 years of life (#5)	89 (43%)	66 (35%)	1.0 (0.6,1.8)	0.981

* after adjusting for age at enrollment

Leigh MW. Ann Am Thorac Soc 13:1305-13, 2016

Number of PCD clinical features: Sensitivity and specificity

Features	Sensitivity	Specificity	1.00 -		 	
Number of general clinical features 4	0.37	0.97	0.75 -	:1		
3 2 1	0.84 0.99 1.00	0.74 0.22 0.04	Sensitivity	i'		
0 Number of criteria- defined clinical	1.00	0.00				
features 4 3	0.21 0.50	0.99 0.96	0.25 -			
2	0.80 0.96 1.00	0.72 0.41 0.00	0.00 -		1	
0	1.00	0.00		0.00 0.3	50 0. [°] cificity	75 1.00

Leigh MW. Ann Am Thorac Soc, 13:1305-13, 2016

Audience Response Question 2

Which of the following patients is MOST LIKELY to have primary ciliary dyskinesia?

A. 8 year old child with situs inversus totalis but no chronic respiratory symptoms.

B. 17 year old girl who developed chronic cough at 15 years of age and now has bronchiectasis on chest CT.

C. 3 year old child with year-round wet cough, year-round nasal congestion and history of neonatal respiratory distress despite term gestation.

D. 14 year old with history of chronic intermittent asthma and allergic rhinitis with recent sinus CT showing mucosal thickening of the right maxillary sinus.

Audience Response Question 2

Which of the following patients is MOST LIKELY to have primary ciliary dyskinesia?

A. 8 year old child with situs inversus totalis but no chronic respiratory symptoms.

B. 17 year old girl who developed chronic cough at 15 years of age and now has bronchiectasis on chest CT.

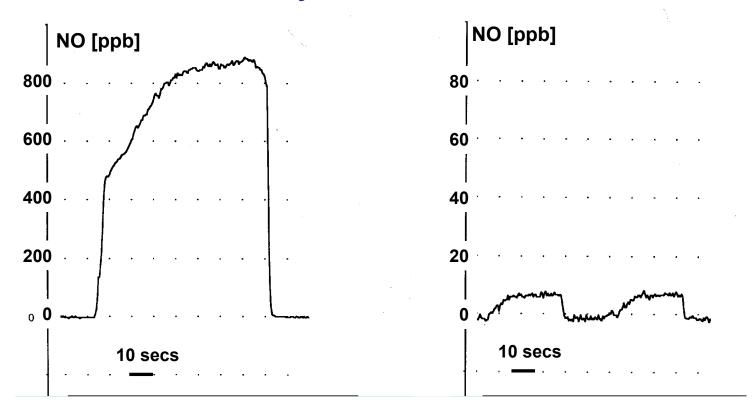
→ C. 3 year old child with year-round wet cough, year-round nasal congestion and history of neonatal respiratory distress despite term gestation.

D. 14 year old with history of chronic intermittent asthma and allergic rhinitis with recent sinus CT showing mucosal thickening of the right maxillary sinus.

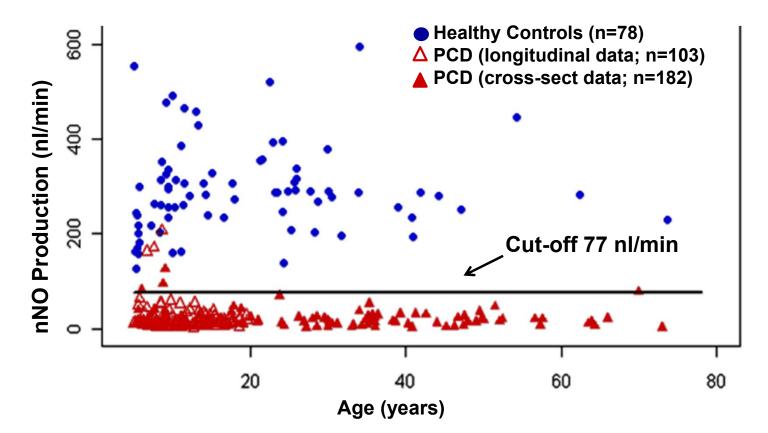
What is the best way to diagnose PCD?

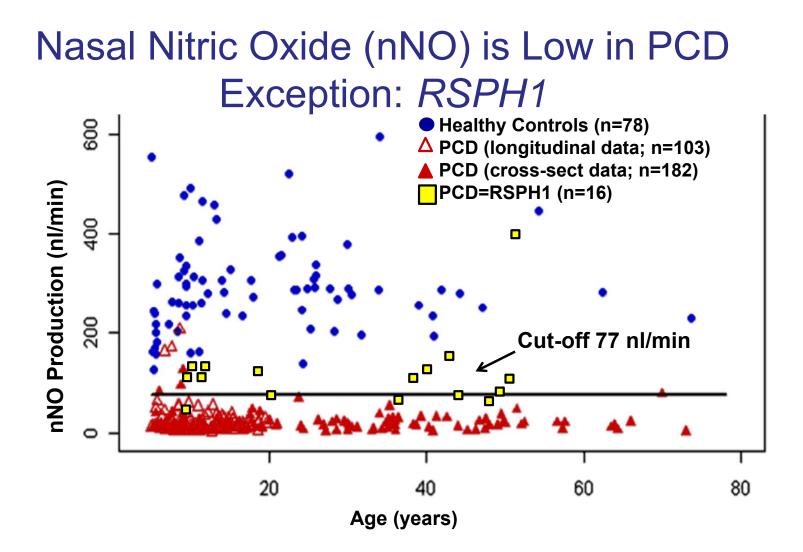
Panel of tests

- Clinical criteria
- Nasal nitric oxide measurement
- Ciliary biopsy for electron microscopy
- Genetic testing for mutations PCD genes
- Other testing
 - Ciliary biopsy w/ high speed videomicroscopy
 - Immunoflourescent analysis of ciliary biopsy
 - Mucociliary clearance studies

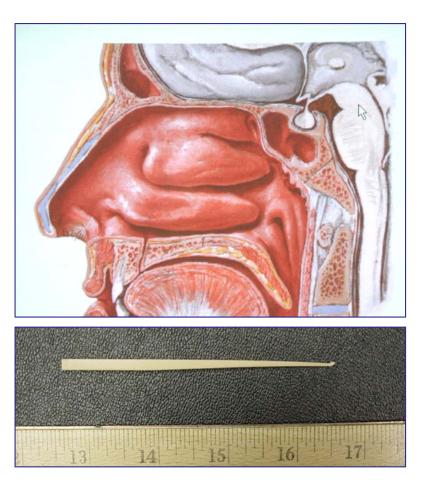

Shapiro AJ et al. : Diagnosis of Primary Ciliary Dyskinesia: An Official American Thoracic Society Clinical Practice Guideline. Am J Respir Crit Care Med. 187(12):e24-e39, 2018

Nasal Nitric Oxide Measurement


- Direct measurement of NO in gas phase
- On line detection of chemiluminescence by photomultiplier tube
- Sensitive (parts per trillion)
- Maneuvers to eliminate contamination with alveolar gases
 - Blowing against resistor

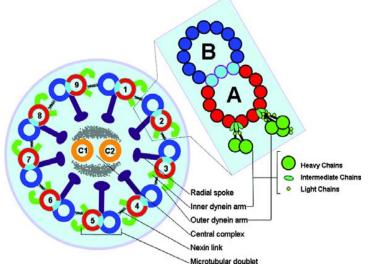

Nasal NO Plateau Tracings in Healthy Control and PCD

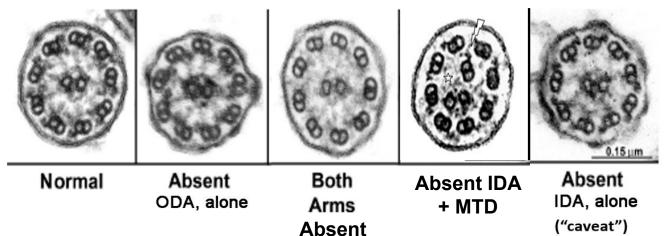
Nasal Nitric Oxide (nNO) is Low in PCD


Leigh MW et al, Ann ATS 2013:10:574-81

Knowles MR et al, AJRCCM 2014;189:707 Leigh MW et al, Ann ATS 2013:10:574-81

Examination of Ciliary Structure and Function

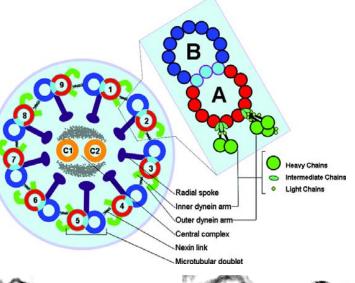

- Visualize turbinate with surgical otoscope
- Brush inferior surface of lower turbinate with biopsy brush or scrape with curette
- Immediately place sample in culture media to examine motility by high-speed videomicroscopy
- Process for electron microscopy to examine ciliary ultrastructure

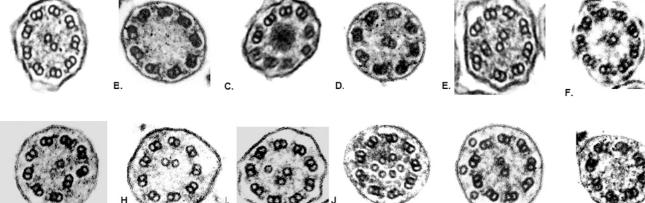


PCD: Ciliary Ultrastructural Defects

Dynein Arms Defects

- Absence/shortening ODA, alone
- Absence/shortening ODA+IDA
- Absent IDA+Microtubular Disorganization (MTD)
- Absence /shortening IDA, alone (?non-specific)

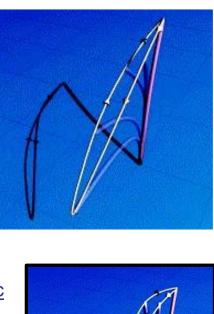



PCD: Ciliary Ultrastructural Defects

Central Complex Defects

(up to 90% appear normal)

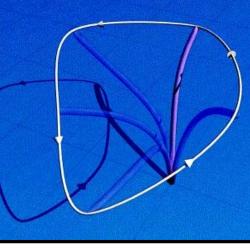
- Absence of radial spoke (RS) or spoke head
- Absence of central pair with transposition of outer doublet to the center
- Associated genes:
 RSPH9, RSPH4A, RSPH1



Daniels, ML, Human Mutat 2013

High-speed videomicroscopy: Ciliary beat patterns

<u>Normal</u>


Planar motion w/ forward power stroke and backward recovery stroke CBF 12.8 Hz Immotility 0%

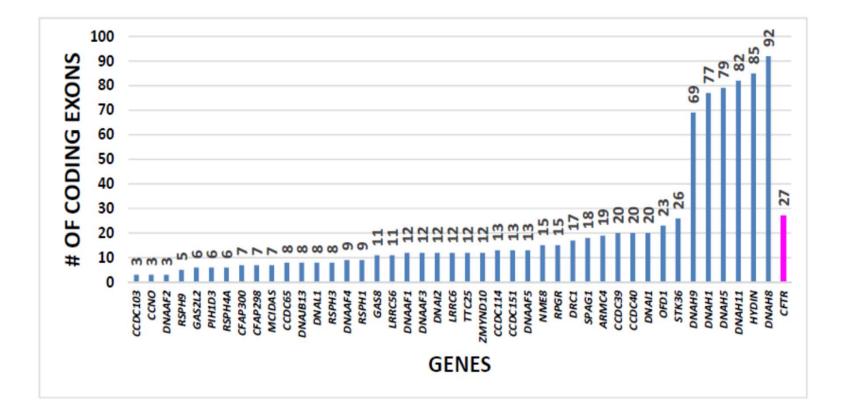
Virtually immotile ODA+IDA defect CBF 0.8 Hz Immotility 79.8%

Stiff/dyskinetic ODA defect CBF 2.3 Hz Immotility 55.0

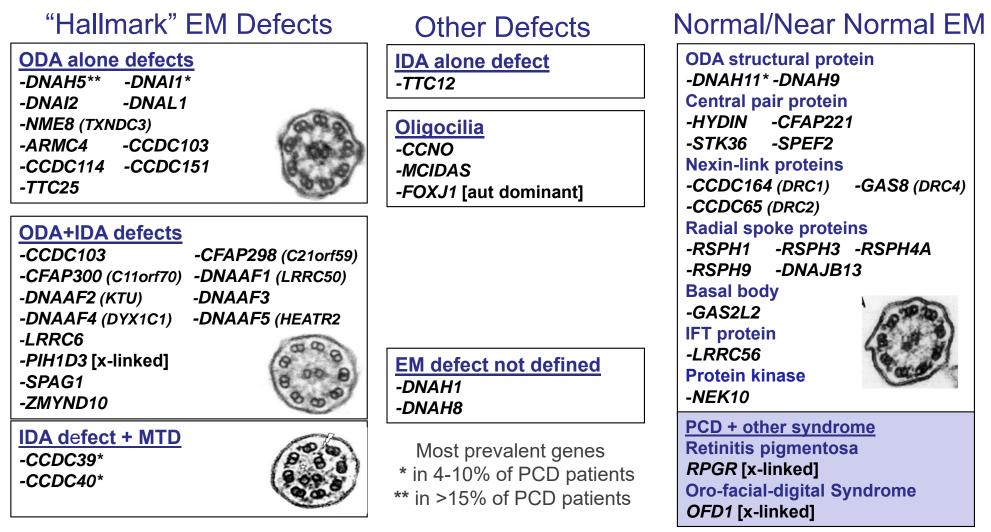
<u>Circular</u> Absence of central pair CBF 10.7 Hz Immotility 0%

Chilvers, Am J Respir Crit Care Med. 2004;169:634-7

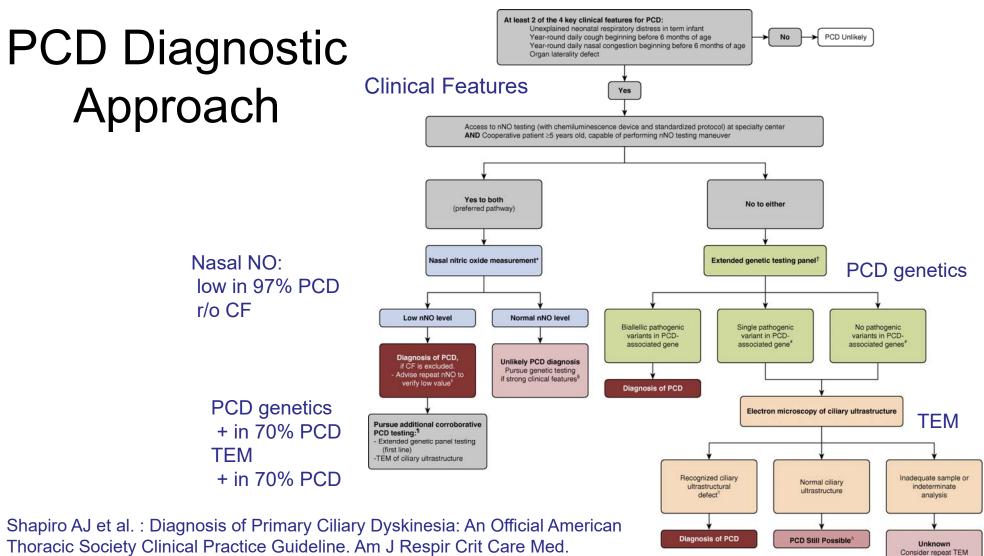
Genetic Testing for PCD is Complex Multiple PCD genes; multiple pathogenic mutations for each PCD gene


Genes with Mutations

Transcription Translation


Altered Proteins

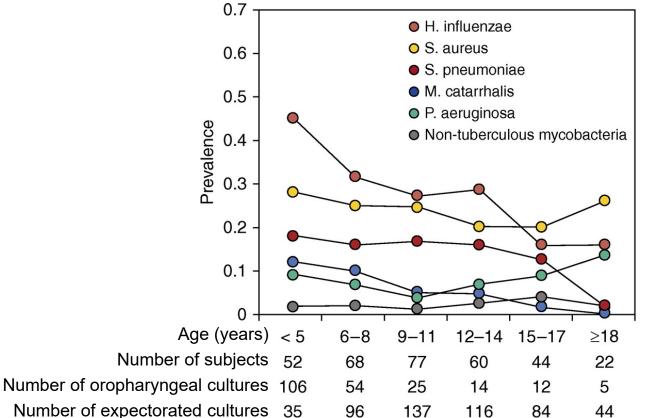
PCD Molecular Genetic Testing


Challenging: Extensive genetic heterogeneity; 43 genes (911 coding exons); account for ~70% of PCD patients.

PCD Genotype - EM Phenotype

49 genes 2/6/2020

or referral to PCD


specialty center

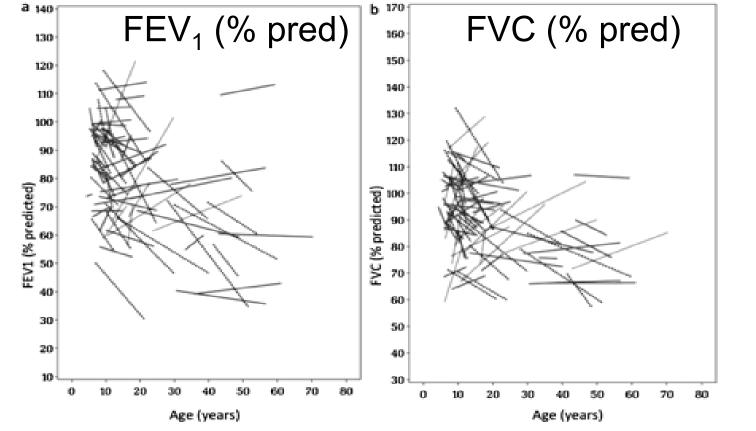
187(12):e24-e39, 2018

Primary Ciliary Dyskinesia

Natural History of Lung Disease during Childhood

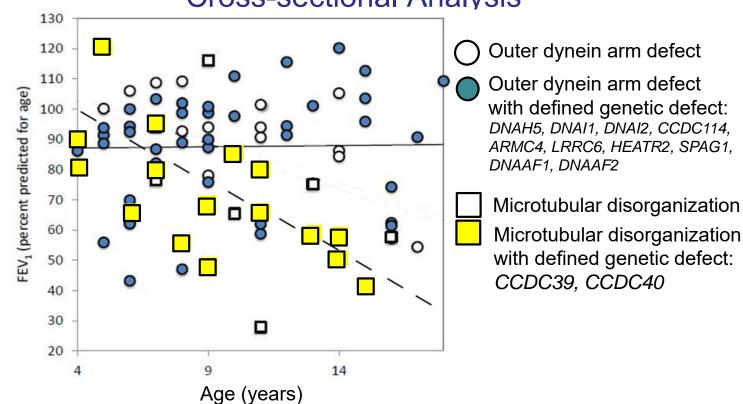
Respiratory Pathogens in PCD children: Cross-sectional plot by age category

Participants < 18 yrs at entry

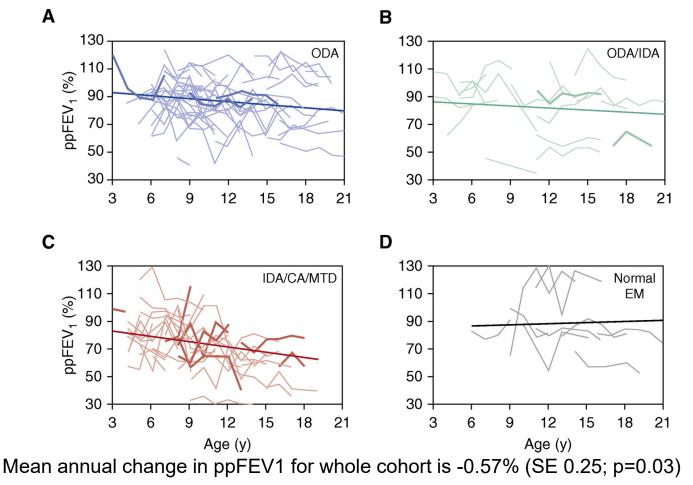

- 137 with confirmed PCD
- 49% male; 82% Caucasian
- Age at enrollment 7.8 <u>+ 4.6 yr</u>
- Baseline plus 5 annual visits Respiratory cultures
- at 728 of 732 visits
- 70.3% expectorated sputum
- 29.7% deep pharyngeal

Pseudomonas aeruginosa

- In 40/137 participants
- Mucoid in 4 participants
- Persistent in 13 participants


Davis SD et al. Am J Respir Crit Care Med 199:190-198, 2019

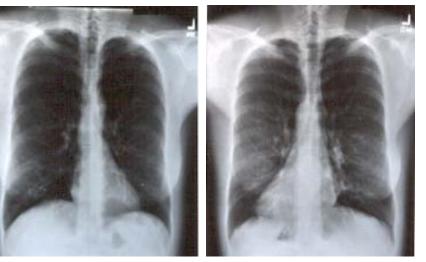
PCD: Longitudinal change in lung function: Wide range in severity and progression of lung disease

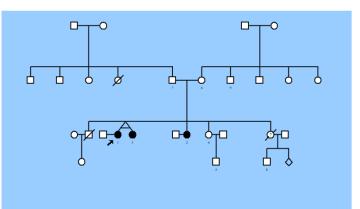

Linear regression of f/u years from 1st measured lung function Marthin: AJRCCM 181:1262, 2010

PCD in Childhood: Lung Function vs Age: Cross-sectional Analysis

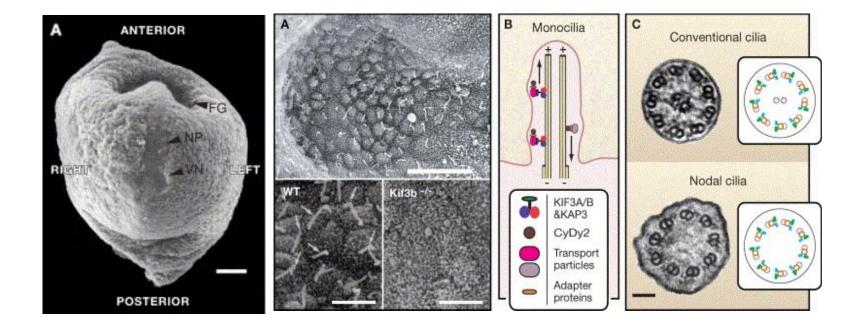
Davis SD: Am J Respir Crit Care Med 191:316-24, 2015

PCD in Childhood: Lung Function vs Age Longitudinal Analysis by Ultrastructural Phenotype

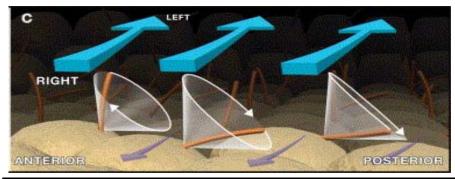

Davis SD et al. Am J Respir Crit Care Med 199:190-198, 2019

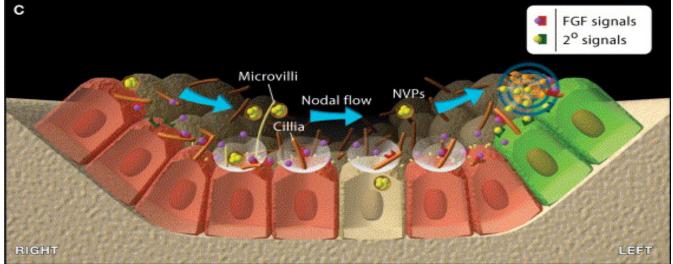

PCD Genotype - Lung	Disease Severity	Normal/Near normal EM ODA structural protein	
ODA alone defects	ODA+IDA defects	DNAH11*	
ODA structural proteins	Cytoplasmic pre-	DNAH9	
DNAH5**	assembly factors	Central pair protein	
DNAI1*	DNAAF1 (LRRC50)	HYDIN	
DNAI2	DNAAF2 (KTU)	STK36	
DNAL1	DNAAF3	Nexin-link proteins	
NME8 (TXNDC3)	DNAAF4 (DYX1C1)	CCDC164 (DRC1)	
ODA Docking protein	DNAAF5 (HEATR2)	CCDC65 (DRC2)	
CCDC114	CFAP298 (C21orf59)	GAS8 (DRC4)	
CCDC151	CFAP300 (C11orf70)	Radial spoke proteins	
ARMC4	LRRC6	RSPH1 ← Milder lung dz	
TTC25	ZMYND10	RSPR3	
ODA Attachment Factor	SPAG1	RSPH4A	
CCDC103	PIH1D3 (x-linked)	RSPH9	
IDA defect + MTD N-DRC CCDC39* ← Worse lung CCDC40* ←	OligociliaCiliary biogenesisCCNOMCIDAS	DNAJB13 Cilia orientation GAS2L2 IFT protein LRRC56	
EM not done DNAH1 DNAH8	Most prevalent genes * in 4-10% of PCD patients	PCD + other syndrome Retinitis pigmentosa +PCD <i>RPGR</i> (x-linked)	
IDA alone defect No gene identified	** in >15% of PCD patients	Oro-facial-digital Syn +PCD OFD1 (x-linked)	

Role of Cilia in Directing Orientation of Organs: More than Situs Inversus


Situs Inversus Totalis is Random in PCD: Identical twins with PCD

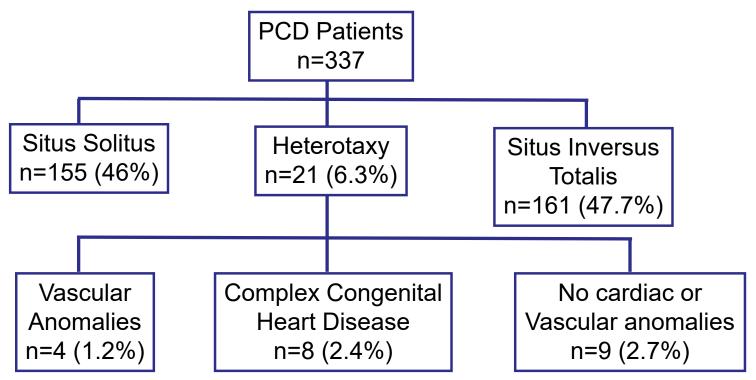
- Identical (monozygotic) twins with discordant organ sidedness:
 - situs solitus
 - situs inversus totalis
- Supports hypothesis that situs inversus is a random event in PCD




Nodal Cilia and Left-right Asymmetry

Hirokawa N, Tanaka Y, Okada Y, Takeda S, Nodal Flow and the Generation of Left-Right Asymmetry. Cell *125:33-45*, 2006

Nodal Cilia and Left-right Asymmetry



Hirokawa N, Tanaka Y, Okada Y, Takeda S, Nodal Flow and the Generation of Left-Right Asymmetry. Cell *125:33-45*, 2006

Congenital Heart Disease and Heterotaxy in PCD

- Background
 - 1982-2005: 3 case reports of PCD with heterotaxy ¹⁻³
- 2007: International retrospective study of prevalence of heterotaxic defects in PCD⁴
 - 337 PCD patients from 4 countries on 3 continents
 - USA (n=147)
 - Germany (n=128)
 - Canada (n=36)
 - Australia (n=26)
 - 1. Schidlow DV et al. J Pediatr 100: 401-403, 1982
 - 2. Engesath VG et al. Pediat Pulmon 16: 9-12, 1993
 - 3. Schmura K et al. Respiration 72: 427-430, 2005
 - 4. Kennedy MP, Omran H, Leigh MW, Dell S, Morgan L, Molina PL, Robinson BV, Minnix SL, Olbrich H, Severin T, Ahrens P, Lange L, Morillas HN, Noone PG, Zariwala M, Knowles MR. Congenital Heart Disease and other Heterotaxic Defects in a Large Cohort of Patients with Primary Ciliary Dyskinesia, Circulation, 115:2814-2821, 2007

Congenital Heart Disease and Heterotaxy in PCD

- Retrospective review of clinical data and imaging
- Combined data from Chapel Hill, NC (147), Toronto, Canada (36), New South Wales, Australia (26), Freiburg, Darmstadt & Cologne, Germany (128) Kennedy MP et al, Circulation 115:2814-2821, 2007

Features Associated with Heterotaxy

Cardiovascular

- Atrioventricular discordance
- Transposition of great arter.
- Left atrial isomerism
- Right atrial isomerism
- Double outlet right ventricle
- Pulmonary stenosis/atresia
- Single ventricle
- L. vent. outflow obstruction
- Septal defects
- Total/partial anomalous
 pulmonary venous return
- Interrupted IVC
- Bilateral SVC
- Conduction system defects

Non-cardiovascular

- Asplenia
- Polysplenia
- Two bi-lobed (left) lungs
- Two tri-lobed (right) lungs
- Biliary atresia
- Abdominal situs inversus
- Thoracic situs inversus
- Intestinal malrotation

PCD Genotype-	-Laterality Defect	Normal/Near normal EM ODA structural protein
ODA alone defects ODA structural proteins DNAH5** DNAI1* DNAI2 DNAL1 NME8 (TXNDC3) ODA Docking protein CCDC114 CCDC151 ARMC4 TTC25 ODA Attachment Factor CCDC103	ODA+IDA defectsCytoplasmic pre- assembly factorsDNAAF1 (LRRC50)DNAAF2 (KTU)DNAAF2 (KTU)DNAAF3DNAAF3 (DYX1C1)DNAAF5 (HEATR2)CFAP298 (C21orf59)CFAP300 (C11orf70)LRRC6ZMYND10SPAG1PIH1D3 (x-linked)	ODA structural protein DNAH11* DNAH9 Central pair protein HXDIN STK36 Nexin-link proteins CCDC164 (DRC1) CCDC65 (DRC2) GAS8 (DRC4) Radial spoke proteins RSPH1 RSPH3 RSPH44 RSPH9
IDA defect + MTD N-DRC CCDC39* CCDC40*	Olisocilia Ciliary biogenesis CCNO MCHDAS	DNAJB13 Cida orientation GAS2L2 IFT protein LRRC56
EM not done DNAH1 DNAH8 IDA alone defect No gene identified	Most prevalent genes * in 4-10% of PCD patients ** in >15% of PCD patients	PCD + other syndrome Retinitis pigmentosa +PCD RPGR (x-linked) Oro-facial-digital Syn +PCD OFD1 (x-linked)

Management of PCD Lung Disease

- No published clinical trials to direct evidence-based therapy
- Management based on the "experience" of specialist with chronic lung disease
 - Few centers follow more than handful of patients with PCD

Management of PCD Lung Disease: General principles

- Enhance airway clearance
- Prevent respiratory infections
- Monitor respiratory cultures and respiratory function
- Treat respiratory infections appropriately
- Avoid exposure to airway irritants
- Maintain healthy lifestyle

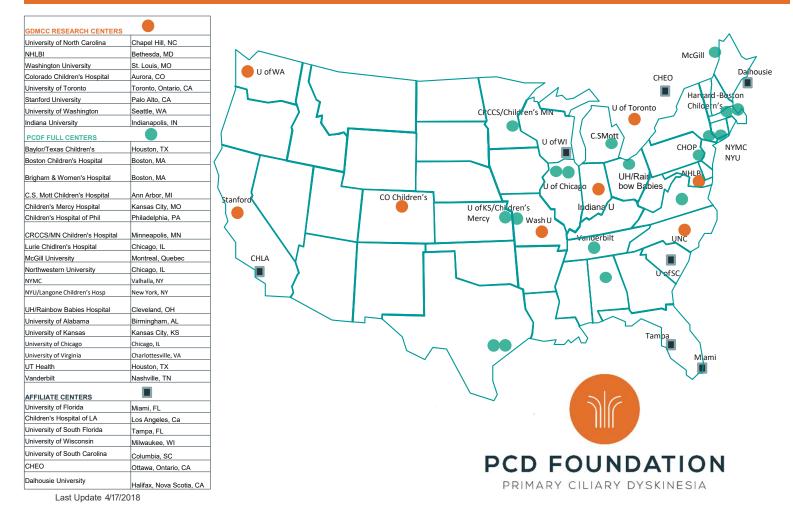
Shapiro AJ, et al. Diagnosis, Monitoring, and Treatment of Primary Ciliary Dyskinesia: PCD Foundation Consensus Recommendations Based on State of the Art Review. Pediatr Pulmonol 51:115-32, 2016.

Audience Response Question 3

You are caring for a 7 year old with Primary Ciliary Dyskinesia (PCD). This child's parents inquire about specific therapies for PCD. Which of the following therapies has been tested in randomized, placebo-controlled trials in PCD patients and demonstrated to have clinical benefit?

- A. Recombinant DNase
- B. Hypertonic saline
- C. Suppressive antibiotic therapy with azithromycin
- D. None of the above

Audience Response Question 3


You are caring for a 7 year old with Primary Ciliary Dyskinesia (PCD). This child's parents inquire about specific therapies for PCD. Which of the following therapies has been tested in randomized, placebo-controlled trials in PCD patients and demonstrated to have clinical benefit?

- A. Recombinant DNase
- B. Hypertonic saline
- C. Suppressive antibiotic therapy with azithromycin
- → D. None of the above

Priorities for PCD Clinical Care and Clinical Research Centers

- Create network of PCD Centers of Excellence and Clinical Practice Guidelines
- Make accurate and early diagnosis of PCD
 - Clinical clues / access to diagnostic testing
- Create centralized patient registry
 - Define true prevalence / incidence of PCD
 - Track longitudinal data on large # of PCD patients
 - Identify clinical features linked with prognosis / progression
- Assess outcome measures for clinical trials
 - Lung function/chest CT/ microbiology
 - Health-related Quality of Life Tool for PCD
- Perform clinical trials

PCD Clinical and Research Centers Network Map GDMCC, Full & Affiliate Centers

PCD Research Teams

PCD Group: UNC-CH

Michael Knowles, MD Maimoona Zariwala, PhD Stephanie Davis, MD Milan Hazucha, PhD Kunal Chawla, BS Peadar Noone, MD Leigh Anne Daniels, MD Marcus Kennedy, MD David E Brown III. MD Adam Shapiro, MD Jessica Pittman, MD Catherine Donnellan Sanders, MD Susan Minnix, RN Kelli Sullivan, MPH Johnny Carson, PhD Kim Burns, BS Larry Ostrowski, PhD

Support:

NIH ORD/NCATS/NHLBI PCD patients and families

GDMCC Consortium

Thomas Ferkol, MD - St. Louis, MO Scott Sagel, MD – Denver, CO Margaret Rosenfeld, MD – Seattle, WA Sharon Dell, MD – Toronto Ken Olivier, MD – NIH Carlos Milla, MD – Palo Alto, CA Adam Shapiro, MD - Montreal Jeff Krischer, PhD – Tampa, FL

